Table 1 Clinical Study results for the FDA reviewed non-union
cases – stratification by category variables
Categorical Variable Prior to Start
Completed Cases Fisher's Exact Probability†
of SAFHS Treatment
Total
Healed
Failed
%Healed
Gender:
Female
30
28
2
93%
Male
44
36
8
82%
Age:
<17
1
1
0
100%
18-29
12
9
3
75%
30-49
32
27
5
84%
50-64
21
19
2
91%
>65
8
8
0
100%
Weight (kg):
<65 kg
12
11
1
92%
65-80 kg
35
31
4
89%
> 80 kg
27
22
5
81%
Fracture Age:
256-365 Days
20
19
1
95%
366-730 Days
27
24
3
89%
731-1826 Days
17
16
1
94%
>1827 Days
10
5
5
50%
Total no. surgical procedures
combining initial and
subsequent interventions:
0
20
15
5
75%
1
15
12
3
80%
2
24
23
1
96%
>3
15
14
1
93%
Prior days without surgery
(days from last surgical
procedure to SAFHS start):
<82
9
9
0
100%
83-365
39
34
5
87%
366-730
12
12
0
100%
>731
14
9
5
64%
Bone:
Tibia/Tibia-Fibula/Fibula
28
26
2
93%
Femur
13
12
1
92%
Radius/Radius-Ulna/Ulna
7
6
1
86%
Humerus
6
5
1
83%
Metatarsal
4
4
0
100%
Other Foot Bones (calcaneus)
1
1
0
100%
Ankle††
2
1
1
50%
Scaphoid
6
2
4
33%
Other Hand Bones (metacarpal)
1
1
0
100%
Other (4-clavicle, 1-pelvis, 1-rib)
6
6
0
100%
††Tibio-talar arthrodesis
Long Bones vs Other Bones
Long Bones
59
54
5
92%
28 tibia
13 femur
7 radius
6 humerus
4 metatarsal
1 metacarpal
Other Bones
1 calcaneus
15
10
5
67%
4 clavicle
1 pelvis
1 rib
6 scaphoid
2 ankle
25
Displaced at the start of SAFHS Therapy
Missing
(5)
(2)
(3)
p-value
No
56
50
6
Yes
13
12
1
0.19
Long bone type - Only for long bone
cases
(5)
(3)
(2)
Missing
8
6
2
Metaphyseal
46
45
1
0.52
Diaphyseal
Initial Fracture Type
Missing
(4)
(2)
(2)
Closed
40
34
6
0.65
Open
22
21
1
Arthrodesis
2
1
1
Osteotomy
6
6
0
0.001
Fixation present at start of
and during SAFHS treatment:
IM rod; only for long bone
No
43
38
5
Cases
(N=59)
Yes
16
16
0
0.16
Open reduction
No
50
43
7
Internal fixation (ORIF)
Yes
24
21
3
External fixation; only for
No
50
46
4
Long bone cases
(N=59)
0.03
Yes
9
8
1
Conservative
No
58
51
7
(Cast, splint, brace)
Yes
16
13
3
IM rod, or ORIF, or External
No
10
7
3
Fixation, or conservatrive
Yes
64`
57
7
0.03
Prior failed Lithotripsy Therapy
No
72
62
10
Yes
2
2
0
Smoking Status:
Missing
(2)
(2)
(0)
Never smoked
34
31
3
Stopped smoking prior to SAFHS start
10
8
2
Smoker at SAFHS
28
23
5
Non-union type:
Missing
(22)
(17)
(5)
Atrophic
41
36
5
Hypertrophic
11
11
0
0.02
References
1. Premarket Approval P900009/Supplement 6, Summary of safety
and effectiveness data: low-intensity pulsed ultrasound device for
the noninvasive treatment of nonunions.
2. Nolte PA, van der Krans A, Patka P, Janssen IMC, Ryaby JP,
1.00
Albers GHR. Low-intensity pulsed ultrasound in the treatment of
89%
nonunions. J Trauma. 2001;51(4):693-703.
92%
3. Frankel VH, Mizuno K. Management of nonunion with pulsed,
low-intensity ultrasound therapy-international results. Surg
Technol Int. 2001;X:1-6.
4. Duarte LR. University of Sao Paulo, Brazil, unpublished data
75%
0.05
presented Societe Internationale de Chirurgie Orthopedique et de
98%
Traumatologie (SICOT).
5. Romano C, Messina J, Meani E. Low-intensity ultrasound for the
treatment of infected nonunions. In: Agazzi M, Bergami PL,
Cicero G, Gualdrini G, Mastorillo G, Meani M, Mintina S, Soranzo
ML, editors. Guarderni di infezione osteoarticolari. 1999;83-93.
85%
6. Strauss E, Gonya G. Adjunct low intensity ultrasound in charcot
0.16
95%
neuroarthropathy. Clin Orthop Relat Res. 1998;349:132-138.
50%
7. Kristiansen TK, Ryaby JP, McCabe J, Frey JJ, Roe LR.
100%
Accelerated healing of distal radial fractures with the use
of specific, low-intensity ultrasound. J Bone Joint Surg.
1997;79-A(7):961-973.
8. Heckman JD, Ryaby JP, McCabe J, Frey JJ, Kilcoyne RF.
Acceleration of tibial fracture-healing by non-invasive,
low-intensity pulsed ultrasound. J Bone Joint Surg. 1994;76-
88%
A(1):26-34.
9. Cook SD, Ryaby JP, McCabe J, Frey JJ, Heckman JD,
100%
0.31
Kristiansen TK. Acceleration of tibia and distal radius fracture
healing in patients who smoke. Clin Orthop Relat Res.
86%
1997;337:198-207.
10. Mayr E, Rudzki MM, Borchardt B, Haüsser H, Rüter A. Does
88%
1.00
pulsed low intensity ultrasound accelerate healing of scaphoid
fractures? Handchir Mikrochir Plast Chir. 2000;32:115-122.
92%
11. Strauss E, Ryaby JP, McCabe JM. Treatment of Jones' fractures
of the foot with adjunctive use of low-intensity pulsed ultrasound
stimulation. J Orthop Trauma. 1999;13(4):310.
89%
0.58
12. Shelev M, Klein MJ. Rabbit gross pathology, hematology,
necropsy, and histological study. PMA900009, vol.3, section
88%
VI.A.3, 302-351.
13. Cardoso AM, et al. Rabbit bone marrow cell chromosome study.
81%
0.44
PMA900009, vol. 3, section VI.A.5, 371-393.
14. Ziskin MC. Report on the safety of the Therasonics Medical
70%
Systems SAFHS unit, model 2A. PMA900009, vol. 3, section
VI.A.1, 209-234.
89%
0.16
15. Lehman J, et al. Ultrasonic effects as demonstrated in live pigs
with surgical metallic implants. Arch Phys Med Rehabil.
1979;483-488.
86%
1.00
16. Gersten JW. Effect of metallic objects on temperature rises
produced in tissue by ultrasound. Am J Phys Med. 1988;37:75-
100%
82.
17. Lotsova EI. Effect of ultrasound on the strength of metal fixing
pins for fractures and joint injuries. Mekh Kompoz Mat. 1979;
No. 3, 548-549.
91%
0.47
18. Skoubo-Kristensen E, Sommer J. Ultrasound influence on
80%
internal fixation with a rigid plate in dogs. Arch Phys Med
82%
Rehabil. 1982;63, 371-373.
19. Handolin L, Kiljunen V, Arnala I, Pajarinen J, Partio EK,
Rokkanen P. The effect of low intensity ultrasound and
0.57
bioabsorbable self-reinforced poly L-lactide screw fixation on
88%
bone in lateral malleolar fractures. Arch Orthop Trauma Surg.
100%
2005;125(5):317-21.
20. Handolin L, Pohjonen T, Partio EK, Arnala I, Tormala P,
Rokkanen P. The effects of low-intensity pulsed ultrasound in
bioabsorbable self-reinforced poly L-lactide screw. Biomaterials.
2002;23:2733-2736.
21. Frankel VH. Results of prescription use of pulsed ultrasound
therapy in fracture management. Surg Technol Int. 1998;
VII:389-393.
22. Fujioka H, Tanaka J, Yoshiya S, Tsunoda M, Fujita K, Matsui N,
Makino T, Kurosaka M. Ultrasound treatment of nonunion of the
hook of the hamate in sports activities. Knee Surg Sports
Traumatol Arthrosc. 2004;12(2):162-164.
23. Fujioka H, Tsunoda M, Noda M, Matsui N, Mizuno K. Treatment
of ununited fracture of the hook of hamate by low-intensity
pulsed ultrasound: a case report. J Hand Surg. 2000;25(1):77-
79.
24. Furue Y. The effect of low-intensity pulsed ultrasound for
treatment of nonunion. Orthopaedic Surgery and Traumatology
(Japanese language). 2000;43(3):231-235.
25. Hadjiargyrou M, McLeod K, Ryaby JP, Rubin C. Enhancement
46. Parvizi J, Parpura V, Greenleaf JF, Bolander ME. Calcium
of fracture healing by low intensity ultrasound. Clin Orthop Relat
signaling is required for ultrasound-stimulated aggrecan
Res. 1998;(355S):S216-229.
synthesis by rat chondrocytes. J Orthop Res. 2002;20(1):51-57.
26. Katsuki M, Mikami J, Matsuno T. Clinical results of sonic
47. Ebisawa K, Hata K, Okada K, Kimata K, Ueda M, Torii S,
accelerated fracture healing system for upper extremity
Watanabe H. Ultrasound enhances transforming growth factor
diseases. Journal of Japanese Society for Surgery of the Hand.
beta-mediated chondrocyte differentiation of human
2002;19(5):601-605.
mesenchymal stem cells. Tissue Eng. 2004;10(5-6) 921-929.
27. Lerner A, Stein H, Soudry M. Compound high-energy limb
48. Leung KS, Cheung WH, Zhang C, Lee KM, Lo HK. Low
fractures with delayed union: our experience with adjuvant
intensity pulsed ultrasound stimulates osteogenic activity of
ultrasound stimulation (Exogen). Ultrasonics. 2004;42(1-9):
human periosteal cells. Clin Orthop Relat Res. 2004;418:253-
915-917.
259.
28. Mayr E, Frankel V, Rüter A. Ultrasound-an alternative
49. Unsworth JM, Kaneez S, Ridgway J, Fenwick SA, Turp EJ,
healing method for nonunions? Arch Orthop Trauma Surg.
Chenery D, Harrison AJ. Pulsed low intensity ultrasound
2000;120:1-8.
enhances mineralization in pre-osteoblast cells. Orthopaedic
29. Mayr E, Laule A, Suger G, Rüter A, Claes L. Radiographic
Research Society Annual Meeting. Washington, 2005.
results of callus distraction aided by pulsed lowintensity
50. Saito M, Soshi S, Tanaka T, Fujii K. Intensity-related differences
ultrasound. J Orthop Trauma. 2001;15(6):407-414.
in collagen post-translational modification in MC3T3-E1
30. Mayr E, Möckl C, Lenich A, Ecker M, Rüter A. Is low intensity
osteoblasts after exposure to low- and high-intensity pulsed
ultrasound effective in treating disorders of fracture healing?
ultrasound. Bone. 2004;35:644-655.
Unfallchirurg. 2002;105:108-115.
51. Gebauer GP, Lin SS, Beam HA, Vieira P, Parsons JP.
31. Mayr E, Wagner S, Ecker M, Rüter A. Ultrasound therapy for
Low-intensity pulsed ultrasound increases the fracture callus
nonunions (pseudarthrosis): three case reports. Unfallchirug.
strength in diabetic BB Wistar rats but does not affect cellular
1999;102(3):191-196.
proliferation. J Orthop Res. 2002:20:587-592.
32. Narasaki K. Low intensity ultrasound treatment of nonunion and
delayed union cases. Orthopaedic Surgery and Traumatology
(Japanese language). 2000;43(3):225-230.
33. Nolte PA, Klein-Nuland J, Albers GHR, Marti RK, Semeins CM,
Goei SW, Burger EH. Low-intensity ultrasound stimulates in
vitro endochondral ossification. J Orthop Res. 2001;16(2):16-22.
34. Pilla AA, Figueiredo M, Nasser PR, Alves JM, Ryaby JT, Klein
M, Kaufmann JJ, Siffert RS. Acceleration of bone-repair by
pulsed sine wave ultrasound: animal. Clinical and mechanistic
studies. In Electromagnetics in Biology and Medicine, ed. by CT
Brighton and SR Pollock, San Francisco Press. 331-341, 1991.
35. Sato W, Matsushita T, Nakamura K. Acceleration of increase in
bone mineral content by low-intensity ultrasound energy in leg
lengthening. J Ultrasound Med. 1999;18:699-702.
36. Warden SJ, Bennell KL, McMeeken JM, Wark JD. Acceleration
of fresh fracture repair using the sonic accelerated fracture
healing system (SAFHS): a review. Calcif Tissue Int.
2000;66:157-163.
37. Yoshitaka H, Toshiharu S, Osamu U, Toshifumi K, Kazuhisa B.
Effect of low internisty ultrasound on severe open fractures.
Seikei Geka (Orthopaedic Surgery and Traumatology)
(Japanese language). 2003;46(1):67-73.
38. Greenleaf JF, Kinnick RR, Bronk JT, Bolander ME. Ultrasound
induced tissue motion during fracture treatment. Orthopaedic
Research Society Annual Meeting. 2005.
39. Zhou S, Schmelz A, Seufferlein T, Li Y, Zhao J, Bachem MG.
Molecular mechanisms of low intensity pulsed ultrasound in
human skin fibroblasts. J Biol Chem. 2004;279(52):54463-9.
40. Rubin C, Bolander M, Ryaby JP, Hadjiargyrou M. The use of
low-intensity ultrasound to accelerate the healing of fractures.
J Bone Joint Surg. 2001;83-A: No. 2, 259,270.
41. Pilla AA, Mont MA, Nasser PR, Khan SA, Figueiredo M,
Kaufmann JJ, Siffert RS. Non-invasive low-intensity pulsed
ultrasound accelerates bone healing in the rabbit. J Orthop
Trauma. 1990;4:246-253.
42. Wang SJ, Lewallen DG, Bolander ME, Chao EYS, Ilstrup DM,
Greenleaf JF. Low-intensity ultrasound treatment increases
strength in a rat femoral fracture model. J Orthop Res.
1994;12:40-47.
43. Yang KH, Parvizi J, Wang SJ, Lewallen DG, Kinnick R,
Greenleaf JF, Bolander ME. Exposure to low-intensity
ultrasound
stimulates aggrecan gene expression in a rat femur fracture
model. J Orthop Res. 1996;14(5):802-809.
44. Azuma Y, Ito M, Harada Y, Takagi H, Ohta T, Jingushi S.
Low-intensity pulsed ultrasound accelerates rat femoral fracture
healing by acting on the various cellular reactions in the fracture
callus. J Bone Miner Res. 2001;16(4):671-680.
45. Takikawa S, Matsui N, Kokubu T, Tsunoda M, Fujioka H, Mizuno
K, Azuma Y. Low-intensity pulsed ultrasound initiates bone
healing in rat nonunion fracture model. J Ultrasound Med.
2001;20(3):197-205.
26