• In order to keep the base plate in its correct position during installation,
it may be useful to weld two iron flat bars under the track, and then weld
the log bolts onto them (fig.3).
• Make a concrete casting in such a way as to embody the base plate
casting into that of the gate track.
• Accurately check that:
The positioning dimensions are correct.
That the base plate is well levelled.
That the 4 stud threads are well clear of cement.
Let the casting harden.
5.2) Other positions
The gearmotor can be positioned in different ways. As an example, fig.5
illustrates a particular type of installation. In the case where the gearmotor
is not fixed on the level of the sliding track (Standard position), you must
ensure that the gearmotor is tightly secured also in relation to the gate posi-
tion, so as to maintain a correct play (1-2mm) between rack and pinion. The
current safety standards with respect to persons, animals and things must
be strictly observed, and in particular risks of accidents due to squashing
in the area of pinion-rack meshing, as well as other mechanical risks, must
be carefully avoided. All the critical spots must be protected by safety
devices in compliance with the current prescriptions.
6) GEARMOTOR FIXING
When the casting has hardened, observe fig. 6 and proceed as follows:
• Position an M10 nut on each of the tie rods, keeping a distance of at least
25mm from the base to allow the gearmotor to be lowered after the instal-
lation is completed, or for subsequent adjustments of the play between
pinion and rack.
• Position a plate "P" supplied as standard on each pair of tie rods and, with
the help of a level, adjust the plane in both directions.
• Remove the cover and screw-cover guard from the gearmotor, and position
the reduction gear unit on the four tie rods with the pinion facing the gate.
• Position the two upper plates P (Fig.6) and tighten the four locking nuts
of the gearmotor.
• Adjust the depth of the gearmotor, making it slide in the appropriate slots
found in the base, and fix it at a distance between pinion and gate which
is adequate to the type of rack to be installed. The rack teeth must mesh
into the pinion along their entire width. In the paragraph headed "Rack
fitting" we specify the measurements and installation methods of the
most widely used types of rack.
7) RACK FITTING
A rack having a 4 tooth pitch must be fitted to the gate. As far as the length
is concerned, this must include the passage space, as well as the space for
securing the brackets activating the limit microswitches, and for the pinion
meshing section. There are different types of rack, each one differing in
terms of capacity and gate fixing method. The Company markets three
types of racks, which are.
7.1) Mod. CFZ (Fig.7).
Galvanised iron rack - 22x22mm section - supplied in 2 - metre lengths -
capacity over 2000kg (≈ 20000N). First weld these pieces onto an adequate
iron angle bar and then weld the lot to the gate. Besides maintaining the
distance between the rack and the side of the gate, the angle bar makes
it easy to fix the rack to the gate, even when the latter is subject to slight
side slipping. When join welding the various rack pieces, you are advised
to arrange a section of rack as in (fig.8) to ensure a correct pitch along the
entire length of the rack.
7.2) Mod. CPZ (Fig.7).
Plastic rack - 22x22mm section - supplied in 1- metre lengths - max. capacity
500kg (≈ 5000N). This model is to be fixed to the gate by means of normal
or self-threaeSng screws. Also in this case, you are advised to insert a
section of rack the other way round in the joint between the various pieces,
so as to maintain the correct tooth pitch. This type of rack is quieter and
allows height adjustments to be made even after having been fixed, using
the slots provided.
7.3) Mod. CVZ (Fig.7)
Galvanised iron rack - 30x12mm section - supplied in 1 - metre lengths -
threaded spacers to be welded - max. capacity 2000kg (≈ 20000N). Having
fixed the spacers in the middle of each of the slots in the various rack pieces,
weld the spacers to the gate. Also in this case, arrange a section of rack the
other way round in the joining points of the various rack pieces to ensure a
correct tooth pitch. The screws which fix the rack to the spacers allow the
rack to be adjusted in height.
7.4) Rack fitting
To fit the rack, proceed as follows:
•
Activate the emergency release by rotating the appropriate release knob
(See paragraph "Emergency manoeuvre").
•
Rest the rack end on the control pinion and secure it (by welding or using
INSTALLATION MANUAL
screws) in correspondence with the pinion, while sliding the gate along
by hand (fig. 9).
•
In the case of incorrect gate alignment (excessive side curving) which
cannot be corrected, place a few shims between the rack and gate in
order to ensure continuous centring of the rack with respect to the pinion
(fig. 10).
DANGER - The welding operation is to be carried out by a competent
person who must be provided with all the personal protection equipment
required by the current safety standards.
8) PINION ADJUSTMENT
Having finished fixing the rack, the rack-pinion play needs to be adjusted
to approximately 2mm (fig.6): this is obtained by slackening the four M10
nuts under the gearmotor base by approximately 2mm, and then securing
the four upper nuts. Make sure that the rack and pinion are aligned and
centred (fig.10).
WARNING - Remember that the rack and pinion life strictly depends
on their correct meshing.
9) ELECTROMECHANICAL LIMITING DEVICES
The operation must be carried out with the emergency release activated and
the mains power supply disconnected.The runners which control the limiting
devices are to be positioned at both ends of the rack.
- Push the gate fully open by hand.
- Position the opening end-of-stroke runner (fig.11) so that it intercepts the
microswitch control lever and makes it trigger.Having identified the correct
position, tighten the runner screws.
- Push the gate fully closed by hand.
- Position the closing end-of-stroke runner (fig.11) so that it intercepts the
microswitch control lever and makes it trigger.Having identified the correct
position, tighten the runner screws.
- The runners must lock the gate before this intercepts the mechanical
backstops placed on the track.The closing end-of-stroke runner adjustment
must be made in such a way as to leave a clearance of approximately
50mm between the gate and the fixed swing leaf, as prescribed by the
current safety standards, otherwise fit an electric edge at least 50mm thick
(fig.12).
10) GATE BACKSTOPS
DANGER -The gate must be provided with mechanical backstops, both
on opening and closing, in order prevent it from coming out of the upper
guide (fig.13); the backstops must be tightly secured to the ground, a
few centimetres beyond the electrical stop point.
11) ELECTRICAL INSTALLATION SETUP
Lay out the electrical installation as shown in fig.14 with reference to the CEI
64-8 and IEC364 provisions complying with the HD384 and other national
standards in force for electrical installation.
WARNING! For connection to the mains, use a multipolar cable having
a minimum cross section of 3x1.5 mm
standards. (For example, if the cable is not protected, it must be at least
equal to H07 RN-F, whereas if it is protected it must be at least equal
to H07 VV-F with a 3x1.5 sq mm
Connect the control and safety devices in compliance with the previously
mentioned technical installation standards.The cables (mains and auxiliary)
must be distinctly separated. Fig.14 shows the number of connections and
their cross sections for a length of approximately 100 metres; for greater
lengths, calculate the cross section for the true automation load.
The main automation components are (fig.14):
I
QR
S
AL
M
P
Fte, Fre Pair of external photocells.
T
C
ANTENNA INSTALLATION
Use an antenna tuned to 433MHz.
For Antenna-Receiver connection, use RG8 coaxial cable.
The presence of metallic masses next to the antenna can interfere with radio
reception. In case of insufficient transmitter range, move the antenna to a
more suitable position.
cross section).
2
Type-approved adequately rated omnipolar circuit-breaker with at
least 3,5-mm contact opening, provided with protection against
overloads and short circuits, suitable for cutting out automation
from the mains. If not already install ed, place a type-approved
omnipolar circuit-breaker with a 0.03A threshold just before the
automation system.
Control panel with built-in receiver
Key selector.
Blinker with tuned antenna.
Actuator
Wall-mounted pushbutton panel.
1-2-4 channel transmitter.
Sliding rack.
ENGLISH
and complying with the current
2
URANO BT Ver. 04 -
17