1.4 Dimensionamiento de Transformadores de Intensidad
Hay que tener en cuenta que el Factor Límite de Precisión se define para la carga nominal. Si
la carga es diferente, la intensidad simétrica que asegura el cumplimiento de la clase de
precisión será, en veces la intensidad nominal, diferente del factor ALF (será mayor que el
factor ALF si la carga es menor que la nominal y mayor que el factor ALF si la carga es mayor
que la nominal). El factor Kb considera esta condición.
Factor de sobredimensionamiento por offset (Ktf)
•
El flujo creado por una intensidad con offset (intensidad asimétrica) será mucho mayor que el
flujo generado por una intensidad sin offset (intensidad simétrica). Dado que el factor ALF se
define para una intensidad simétrica se debe considerar un factor de sobredimensionamiento
por presencia de offset. Este factor viene dado por la relación
entre el flujo total (suma de flujo AC y DC) y el flujo AC.
Ktf se calcula mediante la siguiente fórmula:
w T T
⋅
1
⋅
2
=
Ktf
1
2
T
−
T
T1 es la constante de tiempo primaria.
T2 es la constante de tiempo secundaria.
t es el tiempo libre de saturación o tiempo hasta que se satura el TI.
θ es el ángulo de incidencia de la falta.
Para tiempos libres de saturación mayores de 15 ms, el flujo máximo se obtendrá con
Sin embargo, para tiempos libres de saturación menores que 15 ms, el flujo máximo se
obtendrá para otros ángulos de incidencia.
El tiempo libre sin saturación depende de la función de protección. Para cada tiempo sin
saturación se deberá calcular el ángulo de incidencia de la falta más desfavorable.
Factor de sobredimensionamiento por remanencia (Krem)
•
El flujo remanente puede empeorar la respuesta transitoria del TI si éste tiene el mismo signo
que el flujo generado por los otros factores citados (magnitud de intensidad de falta, carga del
TI, offset).
El factor Krem se calcula como:
donde Kr es el factor de remanencia (máximo flujo remanente / flujo de saturación).
M0ZLFA1807E
1.4-3
ZLF: Protección de Distancia
© ZIV APLICACIONES Y TECNOLOGÍA, S.L.U. 2018
−
t
−
t
θ
θ
⋅
cos
⋅
(
e
−
e
) sin
+
T
1
T
2
Krem
=
φ
MAX AC+DC
φ
MAX AC
−
t
θ
⋅
e
−
sin(
wt
+
)
T
2
1
(1
)
−
Kr
, que representa el ratio
(3.41.1), donde
θ
= .
0