● Minimum number of cells in series: 36 (12V panel).
● Recommended number of cells for highest controller efficiency: 72
(2x 12V panel in series or 1x 24V panel).
● Maximum: 108 cells (3x 12V panel in series).
24V battery and mono- or polycristalline panels
● Minimum number of cells in series: 72
(2x 12V panel in series or 1x 24V panel).
● Maximum: 108 cells (3x 12V panel in series).
3.4. Configuration of the controller (see figure 1 and 2 at the end of the manual))
The VE.Direct communication port (see sect. 1.7) can be used to configure the load
output:
3.4.1. No jumper: BatteryLife algorithm (see 1.2.2.)
3.4.2. Jumper between pin 1 and pin 2: conventional (see 1.2.1.)
Low voltage load disconnect: 11,1V or 22,2V
Automatic load reconnect: 13,1V or 26,2V
3.4.3. Jumper between pin 2 and pin 3: conventional (see 1.2.1.)
Low voltage load disconnect: 11,8V or 23,6V
Automatic load reconnect: 14V or 28V
3.5 LEDs
Green LED: indicates which load output control algorithm has been chosen.
On: one of the two conventional load output control algorithms (see Fig 2)
Blinking: BatteryLife load output control algorithm (see Fig 2)
Yellow LED: signals charge sequence
Off: no power from PV array (or PV array connected with reverse polarity)
Blinking fast: bulk charge (battery in partially charged state)
Blinking slow: absorption charge (battery charged to 80% or more)
On: float charge (battery fully charged)
3.6 Cable connection sequence (see figure 3)
First: connect the cables to the load, but ensure that all loads are switched off.
Second: connect the battery (this will allow the controller to recognize system voltage).
Third: connect the solar array (when connected with reverse polarity, the controller will heat
up but will not charge the the battery).
The system is now ready for use.
3.7 Connecting an inverter
The load output can be used to supply DC loads and simultaneously to control an inverter.
5