Con:
NechSec
−
1
∑
[ ]
[ ][ ]
[ ][ ]
VF
AF
V F
n
A F
n
P
3
=
0
⋅
0
1
n
=
0
NechSec
−
1
NechPer
[ ]
∑
VF
Q
3
=
V F
[
] [ 0
n
−
1
4
n
=
0
Observación: El factor de potencia fundamental también es llamado factor de desplazamiento.
Tangente total
[ ]
Q
3
[ ]
1
Tan
3
=
[ ]
P
3
1
b) Sistema de distribución con neutro virtual
Factor de potencia total.
P[3]
PF[3]=
S[3]
Factor de potencia fundamental total.
P
[3]
1
DPF[3]=
√
(P
[3]² + Q
[3]²)
1
1
Con:
(
2
NechSec-1
Σ
Σ
VF[i][n].AF[i][n]
P
[3]=
1
i=0
n=0
(
2
NechSec-1
Σ
Σ
VF[i]
Q
[3]=
1
i=0
n=0
Observación: El factor de potencia fundamental también es llamado factor de desplazamiento.
Tangente total
Q
[3]
1
Tan[3]=
QP
[3]
1
c) Sistema trifásico sin neutro
Factor de potencia total
P
[
] 3
[ ]
P F
3
=
PF
S
[
] 3
Factor de potencia fundamental total
[ ]
P
3
[ ]
1
DPF
3
=
[ ]
[ ]
2
2
P
3
+
Q
3
1
1
Con:
Si referencia en L1
NechSec
−
1
∑
[ ]
P
3
=
⋅
U
1
NechSec
n
=
0
Si referencia en L2
NechSec
−
1
∑
[ ]
U
P
3
=
⋅
1
NechSec
n
=
0
NechSec
−
1
NechSec
∑
∑
[ ][ ]
[ ][ ]
VF
AF
V F
n
A F
n
+
1
⋅
1
+
n
=
0
n
NechSec
−
1
[ ][ ]
∑
AF
VF
]
⋅
A F
0
n
+
V F
] [ 1 [
n
−
n
=
0
)
[
]
NechPer
n -
. AF[i][n]
4
1
1
[ ][ ] [ ][ ]
2
n
⋅
A
2
n
+
NechSec
1
1
[ ][ ] [ ][ ]
n
A
n
0
⋅
0
+
NechSec
−
1
[ ][ ]
[ ][ ]
VF
AF
V F
n
A F
n
2
⋅
2
=
0
NechSec
−
1
NechPer
[ ][ ]
∑
AF
VF
]
⋅
A F
1
n
+
V F
4
n
=
0
)
NechSec
−
1
∑
[ ][ ] [ ][ ]
⋅
−
U
0
n
⋅
A
1
n
n
=
0
NechSec
−
1
∑
[ ][ ] [ ][ ]
U
n
A
n
⋅
−
1
⋅
2
n
=
0
106
NechPer
[ ][ ]
AF
[
] [ 2
n
−
]
⋅
A F
2
n
4